ANALYSIS OF SEVERAL VARIABLES FINAL EXAMINATION

Total marks: 50
Attempt all questions.
Time: 3 hours
(1) Let $\Omega \subset \mathbb{R}^{3}$ be the portion of the unit cube $0 \leq x, y, z \leq 1$ lying between the planes $y+z=1$ and $x+y+z=2$. Evaluate $\int_{\Omega} x d V$. (10 marks)
(2) Let a_{n} be the volume of the n-dimensional unit ball $B(0 ; 1) \subset \mathbb{R}^{n}$. Prove that if $n=2 m$ then $a_{n}=\frac{\pi^{m}}{m!}$, and if $n=2 m+1$ then $a_{n}=\frac{\pi^{m} 2^{2 m+1} m!}{(2 m+1)!}$. (10 marks)
(3) Parametrize the unit sphere S^{2} (except for the north pole) by stereographic projection from the north pole as follows. If $(u, v, 0)$ is the point where the line through $(0,0,1)$ and (x, y, z) (on the sphere) intersects the plane $z=0$, solve for u and v. Then solve for $g(u, v)=(x, y, z)$. Let $\omega=x d y \wedge d z$, let S^{2} be oriented with the outward pointing normal. Prove that g is an orientation reversing map. Calculate $\int_{S^{2}} \omega$ using the parametrization given by $g .(5+5=$ 10 marks)
(4) Let C be the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $2 x+3 y-z=1$ in \mathbb{R}^{3}, oriented clockwise as viewed from high above the $x y$ plane. Evaluate $\int_{C} y d x-2 z d y+x d z$ directly and by applying Stokes's Theorem. Also find the area of the surface S which is the intersection (in \mathbb{R}^{3}) of the solid cylinder $x^{2}+y^{2} \leq 1$ and the plane $2 x+3 y-z=1 .(3+3+4=10$ marks $)$
(5) Let V be the solid cylinder $x^{2}+y^{2} \leq 1,-1 \leq z \leq 1$ in \mathbb{R}^{3}. Orient V using the outward normal. Let S be the boundary of V with the induced orientation. Let F be the vector field $F(x, y, z)=(x, y, z)$ on \mathbb{R}^{3}. Calculate the flux \int_{S} F.n $d S$ of F outward across the surface S both directly and using Stokes's Theorem. Here n is the unit normal vector as determined by the orientation. $(5+5=10$ marks $)$

